

S ш ٤ id S g -• Zurich 1 D Zürich

O O

n () \mathbf{D} \mathbf{O} Ω P $(\mathbf{O}$ P 0) S Φ ち

Why **Automated Repicking** 0f Wa vefo B Da ->

Data σ 0 O 0 uti hd Q () **()** 5 egree from

Of phase picks S often

-

con iste $\overline{\mathbf{0}}$ ide Ο ntific atio **e**n S often for В not Φ 0 C Onsi σ 5 Q S S 6 D It. lata. No

Ide tific **_** ____ nts О Ω σ iased

S 6 D epic 01 king: ets ar USU 0) **V** \mathbf{O} 9 rge

7 0 ta Π **D**

for

80

 \sim —

Ð (s) -

ω —

\mathbf{O} 0 stent Timing Quality

de e Bui b) р С С fo sible pick Π th Q 9 С С spi 0 0 to t_∈, t ima the arily amplitu "latest de σ <u>S</u> ible S pick d for

Ph

(1)

2C (km)

50

20(20(km)

result is

achived

0 5 6 01

0 \square P 0) P D $\overline{}$ ×

MP.	X Calibration Pro	DCe	edure				Ba	sic Conce	ept	
Remark: This is an iterative process of rep	Error reference pick Empxit : Error assigned by MPX (from predictors + Fischer) reference and MPX vertice and MPX vertic	3. Step: Check of performance by compar	(b)	Charge in waveform characteristic: phase arrival noise window: used to determine noise characteristic there is the the thermine the the thermine the thermine the the thermine the the the the the the the the the th	2.Step: Adjustment of search window page	Summary of Picking Parameters to Cal MPX Parameter Fischer coefficients (#Predictors x #Cla Length of analysing window (for Wiene Set of safetey gaps for predicted pick (Set of safetey gaps for routine pick (s) Lower frequency threshold (Hz) (Frequencies below threshold are not considered for SNR determination)	Consistently picked phas	 Extended Baer-Kradolfer (1987) algorithm 	Used to determine threshold (picking engine), waveform Picking Engine: • Initial pick defines position of search window for repicking (routine pick if available or predicted from simple model)	
peating several times step 1-3 until satisfying result	To assess the quality of the automatic pick we have to check: I True error ε_{mpxT} (difference between reference and automatic pick). I Difference in error classes ε_{ref} and ε_{mpxA} (low quality reference to highest quality class by MPX) (rereation (reference) (rison with reference data set	Narrow gaps + "bad" predicted: results in NO or INCONSITENT pick $\frac{1}{9}$ $\frac{9}{9}$ $\frac{9}{9}$ $\frac{1}{9}$ $\frac{1}{100}$ $\frac{1}{10$	I Length of analysing windows (noise I Safety gaps: Depending on scatter o Tradeoff between hit-ra	arameters	Ibrate: Achieved by Dependencies Iasses) MDA, Test with Ref. Data waveform characteristics of i er Filter) (s) Test with Ref. Data dominant frequency content (s) Test with Ref. Data scatter of predicted & frequency (s) Test with Ref. Data scatter of routine & frequency (s) Test with Ref. Data scatter of routine & frequency (s) Test with Ref. Data scatter of routine & frequency (s) Test with Ref. Data scatter of routine & frequency (s) Test with Ref. Data scatter of routine & frequency (s) Test with Ref. Data scatter of routine & frequency (s) Test with Ref. Data scatter of routine & frequency (s) Test with Ref. Data scatter of routine & frequency (s) Test with Ref. Data scatter of routine & frequency	ses including individual quality assessment	Weighting scheme has to be calibrated with a (hand pic reference data set in order to adopt error assessment of seismologist: Multiple Discriminant Analysis (MDA) to find appropriate Fischer coefficients for data set utomatic pick timing quality	Wiener Filter n charcteristics (predictors) for quality assessment, and waveform filt Quality Assessment Engine: • True uncertainty class from discriminant waveform characteristics (predictors) via Fischer coefficients	

err AutoPicks

ma

Seismologis

2 (AutoPicks

Of

 \mathbf{m}

4

for ea

Inc

-Matrix:

S

 (\mathbf{O})

Of

0

standard

²Swiss Institute Mies, Switzerland Seismological of Geophysic Se Ψ HL Luri ch, 5 erlan 2 1. dieh l(a)tlo.ig.erdw.ethz.ch

0.50 Hz	
not used	y content
2.5 s, 1.25 s, 0.5 s, 0.08 s	ncy content
2 s	of signals
not shown here	data set
Example from Alpine Ref. Data	

Ω S

not use	cy content
2.5 s, 1.25 s, 0.5 s, 0.08	ency content
2	t of signals

rm

data set	not shown here
of signals	2 s
ency content	2.5 s, 1.25 s, 0.5 s, 0.08 s
cy content	not used
	0.50 Hz

0.50 Hz	
not used	y content
2.5 s, 1.25 s, 0.5 s, 0.08 s	ncy content
2 s	of signals
not shown here	data set

data set (Al 2004)

+ Ω De 9

signal-SIO \sim σ 6 sign que

0) no ign

pick

accur a) d) CY

0

and

of initial

and

WRONG

rate

REC

MPX Production Procedure

Reference Data Set \Box 0) 0 6

hase label						
phase is	4	ω	2	н	0	Class
	_ε > 0.40	$0.20 < \varepsilon \le 0.40$	$0.10 < \varepsilon \le 0.20$	$0.05 < \varepsilon \le 0.10$	$0.00 < \varepsilon \le 0.05$	Error (s)
Phase used	0 %	12 %	25 %	50 %	100 %	Weight

(requires Initial Picks for MPX-Production Mode automatic The scatter of predicted arrivals derived from a standard m б picks) le 0 wide ads safety б gaps). ignificant reduction The

J erformance Of Calibration

M₽

ity

____ de

over The presented calibration and automated production 70,000 seismograms with an average uncertainty the present calibration downgrades to

proc

ົດ

ble

б

pick

the

highe

quality

ave

arriv

als

from

Ø

waveform

data

set of

Depth

		Seismologist determined qualit								ality	,				
can b resol earth		Σ ΜΡχ	cla	iss 4	cla	ass 3	cla	iss 2	cla	ss 1	cla	ass (
e used for ution local quake torr		507	0.0%	0	0.0%	0	± 0.058 0.9%	8	± 0.066 8.5%	77	± 0.034 55.9%	422			
r high- nography		365	± 0.0%	0	± 0.09 0.6%	- n nen	± 0.110 7.1%	62	± 0.102 17.6%	159	± 0.042 18.7%	141 + 0 042			
not yet u		371	± 0.424 1.0%	œ	5.4%	31	± 0.494 14.2%	124	± 0.182 18.0%	163	± 0.07 z	+ 0 072			
sed for tor		544	± 0.846 7.8%	60	± 0.000 19.1%	92	± 0.375 23.2%	203	± 0.447 16.8%	152	± 0.294 4.9%	± 0 204			
nography		7	7	•	499	± 0.881 14 <u>.</u> 3%	110	± 0.070 24.9%	120	± 0.568 16.9%	148	± 0.435 11.5%	104	± 0.739 2.3%	17 ± 0 750
				178		246		545		655		662			
		1500	76.9%	591	48.9%	235	37.8%	331	27.6%	250	12.3%	93			
						_		_		~		_			

2		:	Seismo
can t resol earth	Σ MPx	class 4	class
e used for ution local quake tom	507	0 0.0%	0 0.0%
nography	365	0 ± 0.0%	ء ± 0.059 0.6%
not yet u	371	8 ± 0.424 1.0%	3 1 ± 0.483 6.4%
sed for tor	544	60 ± 0.846 7.8%	92 ± 0.556 19.1%
nography	499	110 ± 0.881 14.3%	120 ± 0.678 24.9%
		178	240
	1500	591 76.9%	239 48.9%

				:	Sei	sn
can b resolu earth	ΣN	ЛРх	cl	ass 4	c	las
e used for ution local quake tom		507	0.0%	0	0.0%	
high-		365	÷ 0.0%	+ 0	0.6%	± 0.059
not yet u	1	371	1.0%	8	6.4%	± 0.483
sed for tor		544	÷ 0.010 7.8%	60	19.1%	± 0.556
nography		499	± 0.001 14.3%	110	24.9%	± 0.678
				178		
		1500	76.9%	591	48.9%	

Seismologist determined quality Seismologist determined quality Σ MPx class 4 class 3 class 2 class 1 class 0 Σ MPx class 4 class 3 class 3 class 2 class 1 class 0 Σ MPx class 4 class 3 class 3 class 2 class 1 class 0 Σ MPx class 4 class 4 class 3 class 2 class 1 class 1 class 0 Σ MPx class 4 class 4 class 3 class 1 class 1 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
422 141 45 37 17 662 93 1 1034 ±0.042 ±0.072 ±0.294 ±0.759 662 93 1 177 ±0.066 ±0.072 ±0.294 ±0.759 55.9% 12.3% 12.3% 1 18.7% 6.0% ±0.172 ±0.294 ±0.759 2.3% 12.3%			S	Seismolog	jist deteri	nined qua	ality
422 141 45 37 17 662 93 55.9% 18.7% 6.0% 4.9% 2.3% 10.47 1.2.3% 77 159 163 152 10.47 ±0.435 655 250 8.5% 17.6% 18.7% 4.9% 2.3% 655 250 18.7% 10.102 ±0.182 ±0.447 ±0.435 655 250 8.5% 17.6% 18.0% 16.8% ±0.447 ±0.435 655 250 8.5% 17.6% 18.0% 16.8% 11.5% 545 331 9.0 3 31 92 12.0 545 331 9.0 3 31 92 12.9% 545 37.8% 9.0 4.0483 ±0.566 ±0.678 246 23.9% 37.8% 9.0 8 60 110 17.8 591 4.99% 14.9% 507 365 371 544<	can t resol	ΣMPx	class 4	class 3	class 2	class 1	class 0
141 ±0.042 4.5 ±0.072 37 ±0.284 17 ±0.759 662 ±0.759 93 ±0.759 193 ±0.102 163 ±0.182 152 ±0.447 104 ±0.435 655 250 ±0.435 62 ±0.102 124 ±0.182 203 ±0.447 11.5% 545 331 62 ±0.059 124 ±0.439 203 ±0.439 148 ±0.375 545 331 92 ±0.059 12.3% 16.3% 11.5% 545 331 92 ±0.059 16.3% 12.3% 545 331 92 ±0.69% 16.3% 11.5% 545 331 92 ±0.69% 100 246 23.5 37.8% 9365 371 544 499 178 591 365 371 544 499 1500 1500	be used for ution local	507	0 0.0%	0 0.0%	8 ± 0.058 0.9%	77 ± 0.066 8.5%	422 ± 0.034 55.9%
45 ±0.072 37 ±0.294 17 ±0.759 662 93 ±0.759 163 162 104 655 250 ±0.182 ±0.447 ±0.435 655 250 ±0.483 ±0.375 ±0.485 545 331 ±0.494 ±0.375 ±0.568 545 331 ±0.483 ±0.375 ±0.568 545 331 ±0.483 ±0.375 ±0.568 23.2% 16.9% 331 ±0.483 ±0.375 ±0.568 331 31.5% 331 ±0.483 ±0.375 ±0.568 ±0.578 331 31.5% ±0.483 ±0.566 ±0.678 24.6 23.5% 48.9% 6.4% ±0.881 ±1.3% 48.9% 48.9% 48.9% 371 544 499 1500 1500 1500 1500 371 544 499 1500 1500 1500 • • ±1.0% ±1.0% ±1.0% ±1.0% • • ±1.0% ±1.0% ±1.0% ±1.0%	' high-	365	0 ± 0.0%	3 ± 0.059 0.6%	62 ± 0.110 7.1%	159 ± 0.102 17.6%	141 ± 0.042 18.7%
37 17 662 93 ± 0.294 ± 0.759 ± 0.759 12.3% 152 104 655 250 ± 0.447 ± 0.435 11.5% 545 250 203 148 545 331 ± 0.375 ± 0.568 27.6% 331 ± 0.375 ± 0.568 331 31 ± 0.375 ± 0.678 37.8% 37.8% 19.1% 24.9% 23.5 36 ± 0.846 ± 0.678 37.8% 37.8% 50 110 178 591 48.9% ± 0.881 ± 0.881 76.9% 1500 544 499 1500 1500 1500	not yet u	371	8 ± 0.424 1.0%	31 ± 0.483 6.4%	124 ± 0.494 14.2%	163 ± 0.182 18.0%	45 ± 0.072 6.0%
17 ± 0.759 2.3%662 s93 12.3%104 ± 0.759 2.3%655 12.3%250 12.3%104 ± 0.435 1.1.5%655 2.50 2.7.6%250 2.7.6%148 ± 0.568 16.9%545 3.31 3.7.8%331 3.1 3.1 3.1 3.1 3.1 4.8.9%100 ± 0.881 ± 0.881 14.3%178 3.591 3.6.9%591 3.6.9%100 499178 3.591 3.5 3.5591 3.5	sed for tor	544	60 ± 0.846 7.8%	92 ± 0.556 19.1%	203 ± 0.375 23.2%	152 ± 0.447 16.8%	37 ± 0.294 4.9%
662 93 12.3% 655 250 27.6% 545 331 37.8% 178 235 48.9% 1500	nography	499	110 ± 0.881 14.3%	120 ± 0.678 24.9%	148 ± 0.568 16.9%	104 ± 0.435 11.5%	17 ± 0.759 2.3%
93 12.3% 250 27.6% 331 331 48.9% 76.9% 1500			178	246	545	655	662
		1500	591 76.9%	235 48.9%	331 37.8%	250 27.6%	93 12.3%

P

use Of Ø Of min th . Φ 10 S 0 mo tte ode 0 e (Solarin S) 0 σ O et <u>a</u> atio 997 -C catalog D ga ction σ Φ Ο \mathbf{O} ation S) is 5 0 ß S e to be (bas used as initial picks \square 0 on nn -weighted

∧ 0

GRSN, GERESS, INGV, LED, OGS, nted **n** ŚŚ,

 \bigcirc

Sto

DSO **D**SO

Acknov We wis

wish to thank p

ents

people from

BED,

R

RSNI,

SED

SISMA

SNF

G

Ŝ Ŝ

AMG

data

Aldersons, F. (2004) Toward a Three-Dimensional Crustal Structure of the I Baer , M. & Kradolfer, U. (1987) An Automatic phase picker for local and tele

References

an iterative calibration procedure

(MDA for

different subset

Ś

Of

data

Ο

rder

б

Ο

0

<e

p

ediction

an

0

discrin

Ы

atio

Of

class

__

and

N

Se

Te

gion

tro

0

Ø

T

quak

Φ

nts

Bull.

Se

So

C

Z

 \rightarrow

437.

graphy. -1445.

D

th

S

Φ

<

D

sity,

pp.

123.

0

B

uch

<u>O</u>f

the

class

-

picks

towards

lower

quality

clas

es

n

Ø

next step

¥e

will test

0

00

Such

Ø

performance

cannot

σ

Φ

reached

IJ.

LO

asonable

time

by

manual

repicking. However,